Multiplication over Arbitrary Fields

نویسنده

  • Markus Bläser
چکیده

We prove a lower bound of 52n2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Polynomial Multiplication via Discrete Fourier Transforms

We study the complexity of polynomial multiplication over arbitrary fields. We present a unified approach that generalizes all known asymptotically fastest algorithms for this problem. In particular, the well-known algorithm for multiplication of polynomials over fields supporting DFTs of large smooth orders, Schönhage-Strassen’s algorithm over arbitrary fields of characteristic different from ...

متن کامل

A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields

We prove a lower bound of 52n 2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

On polarised class groups of orders in quartic CM-fields

We give an explicit characterisation of pairs of orders in a quartic CM-field that admit the same polarised ideal class group structure. This generalises a simpler result for imaginary quadratic fields. We give applications to computing endomorphism rings of abelian surfaces over finite fields, and extending a completeness result of Murabayashi and Umegaki [13] to a list of abelian surfaces ove...

متن کامل

Green’s Formula with C-action and Caldero-keller’s Formula for Cluster Algebras

It is known that Green’s formula over finite fields gives rise to the comultiplications of Ringel-Hall algebras and quantum groups (see [Gre], see also [Lu]). In this paper, we prove a projective version of Green’s formula in a geometric way. Then following the method of Hubery in [Hu2], we apply this formula to proving Caldero-Keller’s multiplication formula for acyclic cluster algebras of arb...

متن کامل

M ar 2 00 5 Duality Theorems for Crossed Products over Rings ∗

In this note we improve and extend duality theorems for crossed products obtained by M. Koppinen (C. Chen) from the case of base fields (Dedekind domains) to the case of an arbitrary Noetherian commutative ground rings under fairly weak conditions. In particular we extend an improved version of the celebrated Blattner-Montgomery duality theorem to the case of arbitrary Noetherian ground rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999